EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

SCOTSMAN ICE SYSTEM

HID312 ICE MACHINE (COUNTERTOP MOUNTED) DES. J. ROBERSON

JOB NO. 11-1508

DATE

4/13/15

1

2 SHEETS

SEISMIC ANCHORAGE

COUNTERTOP MOUNTED

No. 4197

 $T_u = 291 LB/BOLT (MAX)$ $V_u = 82 LB/BOLT (MAX)$

FRONT ELEVATION

NOTES:

1. FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10

STRENGTH DESIGN IS USED. (SDs = 2.20, Ap = 1.0, Ip = 1.5, Rp = 2.5, $\mathrm{z/h} \leq 1$)

HORIZONTAL FORCE (En) = 1.58 Wp VERTICAL FORCE (Ev) = 0.44 Wb

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

www.EquipmentAnchorage.com

SCOTSMAN ICE SYSTEM

HID312 ICE MACHINE (COUNTERTOP MOUNTED) DES. J. ROBERSON JOB NO.

DATE

11-1508

4/13/15

SHEETS

SEISMIC ANCHORAGE

COUNTERTOP MOUNTED

SIDE ELEVATION

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED (SDS = 2.20, $a_p = 1.0$, $I_p = 1.5$, $R_p = 2.5$, z/h < 1)

WEIGHT = 183 LB

HORIZONTAL FORCE (En) = 1.58Wp = 289 LB

VERTICAL FORCE (E_v) = 0.44W_p = 81 LB

BOLT FORCES:

BOLT SPEC: 3/8"ø (A307) BOLTS

ΦT= 3355 LB/BOLT

φV= 1723 LB/BOLT

TENSION (T)

$$T_{\text{U MAXIMUM}} = \left[\frac{289\#(21'')}{2 \text{ BOLTS}(14.5'')} \times (0.3) \right] + \frac{289\#(21'')(8.2'')}{2 \text{ BOLTS}(13.62'')(14.5'')} - \frac{(183\#(0.9) - 81\#)(8.2'')}{2 \text{ BOLTS}(14.5'')} = 291 \text{ LB/BOLT (MAX)}$$

$$(\text{HORIZ - FRONT TO BACK}) \qquad (\text{HORIZ - SIDE TO SIDE}) \qquad (\text{0.9WBIGHT}) - \text{Ev})$$

SHEAR (V)

$$V_{UMAXIMUM} = \frac{289\#(8.2")}{2 \text{ BOLTS}(14.5")} = 82 \text{ LB/BOLT (MAX)}$$

www.EquipmentAnchorage.com

OF

SCOTSMAN ICE SYSTEM

HID312 ICE MACHINE (WALL MOUNTED)

DES. J. ROBERSON

11-1508 JOB NO. 4/13/15

DATE

SHEETS

SEISMIC ANCHORAGE

WALL MOUNTED

 $T_u = 237 LB/SCREW (MAX)$ $V_u = 107 LB/SCREW (MAX)$

FRONT ELEVATION

NOTES:

FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED. (SDS = 2.20, Ap = 1.0, Ip = 1.5, Rp = 2.5, z/h < 1)

HORIZONTAL FORCE (En) = 1.58 Wp VERTICAL FORCE (Ev) = 0.44 Wp

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

www.EquipmentAnchorage.com

OF

SCOTSMAN ICE SYSTEM

HID312 ICE MACHINE (WALL MOUNTED)

DES. J. ROBERSON 11-1508 JOB NO. 4/13/15

DATE

SHEETS

SEISMIC ANCHORAGE

WALL MOUNTED

STEEL STUD WALL SECTION

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10. STRENGTH DESIGN IS USED (SDS = 2.20, 2p = 1.0, 1p = 1.5, Rp = 2.5, z/h < 1)

WEIGHT = 188 LB HORIZONTAL FORCE (En) = 1.58Wp = 297 LB VERTICAL FORCE (E_V) = 0.44W_p = 83 LB

BOLT FORCES:

TENSION (T)

$$T_{\text{U VERTICAL}} = \frac{(188 \# (1.2) + 83 \#)(13")}{4 \text{ sorews}(1195")} = 84 \text{ LB/SCREW}$$

$$T_{U \text{ PARALLEL}} = \frac{297 \# (13")}{2 \text{ screws} (16")} = 121 \text{ LB/SCREW}$$

$$T_{U PERP.} = \frac{297 \# (17.2")}{4 \text{screws} (11.95")} = 107 \text{ LB/SCREW}$$

$$T_{UMAX} = 84# + 121# + 0.3(107#) = 237 LB/SCREW (MAX)$$

SHEAR (V)
$$V_{U MAX} = \sqrt{\left(\frac{(1.2(188\#) + 83\#)}{4 \text{ screws}}\right)^2 + \left(\frac{297\#}{4 \text{ screws}}\right)^2} = 107 \text{ LB/SCREW (MAX)}$$

#14 TEK SCREWS TO 16 GAGE, 50 KSI

φT= 418 LB/SCREW (TENSION) φV= 362 LB/SCREW (SHEAR)

www.EquipmentAnchorage.com

SCOTSMAN ICE SYSTEM

HID525 ICE MACHINE (COUNTERTOP MOUNTED) DES. J. ROBERSON 11-1508 JOB NO. 4/13/15

DATE

SHEETS

SEISMIC ANCHORAGE

COUNTERTOP MOUNTED

 $T_u = 274 LB/BOLT (MAX)$ $V_u = 93 LB/BOLT (MAX)$

NOTES:

FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED. (SDS = 2.20, Ap = 1.0, Ip = 1.5, Rp = 2.5, z/h < 1)

HORIZONTAL FORCE (En) = 1.58 Wp VERTICAL FORCE (Ev) = 0.44 Wp

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

SCOTSMAN ICE SYSTEM

HID525 ICE MACHINE (COUNTERTOP MOUNTED)

DES. J. ROBERSON

JOB NO. 11-1508

DATE 4/13/15

BOLT SPEC: 3/8"ø (A307) BOLTS

φT= 3355 LB/BOLT

φV= 1723 LB/BOLT

2

OF **Z** SHEETS

SEISMIC ANCHORAGE

COUNTERTOP MOUNTED

SIDE ELEVATION

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED (SDS = 2.20, 2p = 1.0, 1p = 1.5, 1p = 2.5, 1p

WEIGHT = 208 LB

HORIZONTAL FORCE (En) = 1.58Wp = 329 LB

VERTICAL FORCE (E_V) = 0.44W_p = 92 LB

BOLT FORCES:

TENSION (T)

 $T_{\text{U MAXIMUM}} = \left[\frac{329\#(21'')(8.2'')}{1 \text{ BOLT } (18.62'')(14.5'')} \times (0.3) \right] + \frac{329\#(21'')}{2 \text{ BOLTS } (14.5'')} - \frac{(208\#(0.9) - 92\#)(8.2'')}{2 \text{ BOLTS } (14.5'')} = 274 \text{ LB/BOLT (MAX)}$ $(14.5'') + \frac{1}{2} (14.5'') + \frac{1}{2$

SHEAR (V)

$$V_{UMAXIMUM} = \frac{329\#(8.2'')}{2 \text{ BOLTS}(14.5'')} = 93 \text{ LB/BOLT (MAX)}$$

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

SCOTSMAN ICE SYSTEM

HID525 ICE MACHINE (WALL MOUNTED) DES. J. ROBERSON

JOB NO. 11-1508

DATE

4/22/15

2 _{SHEETS}

SHEET

SEISMIC ANCHORAGE

Tu = 586 LB/BOLT (MAX)

 $V_u = 227 LB/BOLT (MAX)$

<u>WALL MOUNTED</u>

FRONT ELEVATION

NOTES:

1. FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10

STRENGTH DESIGN IS USED. (Sps = 2.20, a_p = 1.0, l_p = 1.5, R_p = 2.5, $z/h \le 1$)

HORIZONTAL FORCE (Eh) = 1.58 Wp VERTICAL FORCE (Ev) = 0.44 Wp

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

SCOTSMAN ICE SYSTEM

HID525 ICE MACHINE (WALL MOUNTED)

DES. J. ROBERSON
JOB NO. 11-1508

DATE 4/22/15

2

SHEETS

SEISMIC ANCHORAGE

WALL MOUNTED

SIDE ELEVATION

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED (SDS = 2.20, Ap = 1.0, Ip = 1.5, Rp = 2.5, $\mathrm{z/h} \leq 1$)

WEIGHT = 213 LB

HORIZONTAL FORCE (En) = 1.58Wp = 337 LB

VERTICAL FORCE (E_v) = 0.44W_p = 94 LB

BOLT FORCES:

TENSION (T)

Tu vertical=
$$\frac{(213\#(1.2) + 94\#)(12")}{2 \text{ BOLTS (11")}} = 191 \text{ LB/BOLT}$$

$$T_{UPARALLEL} = \frac{337 \# (12')' (14.3'')}{180 \text{LT} (16'')' (11'')} = 329 \text{ LB/BOLT}$$

$$T_{UPERP.} = \frac{337\#(14.3")}{2 \text{ BOLTS}} = 219 \text{ LB/BOLT}$$

$$T_{UMAX} = 191# + 329# + 0.3(219#) = 586 LB/BOLT (MAX)$$

SHEAR (V)
$$V_{U \; MAX} = \sqrt{\left(\frac{(1.2(213\#) + 94\#)}{6 \; \text{BoLTS}}\right)^2 + \left(\frac{337\#(14.3")}{2 \; \text{BoLTS} \; (11")}\right)^2} = 227 \; \text{LB/BOLT} \; (\text{MAX})$$

BOLT SPEC: 1/4"ø (A307) BOLTS

φT= 1491 LB/BOLT

φV= 807 LB/BOLT

www.EquipmentAnchorage.com

SCOTSMAN ICE SYSTEM

HID540 ICE MACHINE (COUNTERTOP MOUNTED)

DES. J. ROBERSON 11-1508

4/13/15 DATE

JOB NO.

SHEET

SHEETS

SEISMIC ANCHORAGE

COUNTERTOP MOUNTED

 $T_u = 335 LB/BOLT (MAX)$ $V_u = 96 LB/BOLT (MAX)$

FRONT ELEVATION

NOTES:

1. FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED. (Sps = 2.20, a_p = 1.0, l_p = 1.5, R_p = 2.5, $z/h \le 1$)

HORIZONTAL FORCE (En) = 1.58 Wp VERTICAL FORCE (Ev) = 0.44 Wp

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

SCOTSMAN ICE SYSTEM

HID540 ICE MACHINE (COUNTERTOP MOUNTED) DES. J. ROBERSON

JOB NO. 11-1508

DATE

4/13/15

2

SHEETS

SEISMIC ANCHORAGE

COUNTERTOP MOUNTED

SIDE ELEVATION

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED (SDS = 2.20, Δp = 1.0, |p| = 1.5, Rp = 2.5, $z/h \le 1$)

WEIGHT = 215 LB

HORIZONTAL FORCE (Eh) = 1.58Wp = 340 LB

VERTICAL FORCE (Ev) = 0.44Wp = 95 LB

BOLT FORCES:

TENSION (T)

BOLT SPEC: 3/8"ø (A307) BOLTS

ΦT= 3355 LB/BOLT

φV= 1723 LB/BOLT

$$T_{\text{U}} \text{ MAXIMUM} = \left[\frac{340\#(24.5'')(8.2'')}{1 \text{ BOLT } (18.62'')(14.5'')} \times (0.3) \right] + \frac{340\#(24.5'')}{2 \text{ BOLTS } (14.5'')} - \frac{(215\#(0.9) - 95\#)(8.2'')}{2 \text{ BOLTS } (14.5'')} = 335 \text{ LB/BOLT } (\text{MAX})$$

(HORIZ - SIDE TO SIDE)

(HORIZ. - FRONT TO BACK)

(0.9(WEIGHT) - Ev)

SHEAR (V)

$$V_{u \text{ MAXIMUM}} = \frac{340 \# (8.2")}{2 \text{ BOLTS} (14.5")} = 96 \text{ LB/BOLT (MAX)}$$

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

11-1508

www.EquipmentAnchorage.com

OF

SCOTSMAN ICE SYSTEM

HID540 ICE MACHINE (WALL MOUNTED) DES. J. ROBERSON

DATE 4/22/15

JOB NO.

1

SHEETS

SEISMIC ANCHORAGE

WALL MOUNTED

 $T_u = 707 LB/BOLT (MAX)$ $V_u = 290 LB/BOLT (MAX)$

FRONT ELEVATION

NOTES:

1. FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10

STRENGTH DESIGN IS USED. (SDS = 2.20, Ap = 1.0, Ip = 1.5, Rp = 2.5, z/h < 1)

HORIZONTAL FORCE (Eh) = 1.58 Wp VERTICAL FORCE (Ev) = 0.44 Wp

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

www.EquipmentAnchorage.com

SCOTSMAN ICE SYSTEM

HID540 ICE MACHINE (WALL MOUNTED)

DES. J. ROBERSON 11-1508 JOB NO.

4/22/15 DATE

SHEETS

SEISMIC ANCHORAGE

WALL MOUNTED

OF

SIDE ELEVATION

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED (SDS = 2.20, 2p = 1.0, 1p = 1.5, Rp = 2.5, z/h < 1)

WEIGHT = 220 LB

HORIZONTAL FORCE (En) = 1.58Wp = 348 LB

VERTICAL FORCE (E_V) = 0.44W_p = 97 LB

BOLT FORCES:

TENSION (T)

$$T_{U \text{ VERTICAL}} = \frac{(220\#(1.2) + 97\#)(12")}{2 \text{ BOLTS (11")}} = 197 \text{ LB/BOLT}$$

$$T_{U \text{ PARALLEL}} = \frac{348\#(12")(17.9")}{1 \text{ BOLT } (16")(11")} = 425 \text{ LB/BOLT}$$

$$T_{U PERP.} = \frac{348 \# (17.9")}{2 \text{ BOLTS (11")}} = 283 \text{ LB/BOLT}$$

$$T_{UMAX} = 197# + 425# + 0.3(283#) = 707 LB/BOLT (MAX)$$

$$V_{\text{U MAX}} = \sqrt{\left(\frac{(1.2(220\#) + 97\#)}{6 \text{ BOLTS}}\right)^2 + \left(\frac{348\#(17.9")}{2 \text{ BOLTS}}\right)^2} = 290 \text{ LB/BOLT (MAX)}$$

BOLT SPEC: 1/4"ø (A307) BOLTS

φT= 1491 LB/BOLT

ΦV= 766 LB/BOLT

SCOTSMAN EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING SCOTSMAN EQUIPMENT ANCHORAGE MODEL MDT3F12 AND MDT4F12 ICE DISPENSERS DATE 6/20/01 OF 1 SPREET

SEISMIC ANCHORAGE

WALL MOUNTED

SIDE ELEVATION

LOADS: PER 1998 CALIFORNIA BUILDING CODE - SECTION 1632A

WEIGHT = 200 LBS

HORIZONTAL FORCE (VH) = 0.94W = 188 LBS

VERTICAL FORCE (W) = 0.33(VH) = 63 LBS

BOLT FORCES:

TENSION (T)

$$T = \frac{188#}{8 \text{ screws}} + \frac{(200# + 63#)||.9||}{4 \text{ screws} (32.0")} = 48 \text{ LBS/SCREW (MAX)}$$

SHEAR (V)

$$V = \frac{188#}{8 \text{ screws}} + \frac{200# + 63#}{8 \text{ screws}} = 56 \text{ LBS/SCREW (MAX)}$$

NOTE:

PROVIDE WALL STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN. (BY ENGINEER OF RECORD FOR THE BUILDING)

SEISMIC ANCHORAGE

WALL MOUNTED

LOADS: PER 1998 CALIFORNIA BUILDING CODE - SECTION 1632A

WEIGHT = 280 LBS

HORIZONTAL FORCE (VH) = 0.94W = 263 LBS

VERTICAL FORCE (W) = 0.33(VH) = 88 LBS

BOLT FORCES:

TENSION (T)

$$T = \frac{(280^{\#} + 88^{\#})||.25^{\#}}{3 \text{screek}(30.0^{\#})} + \frac{263^{\#}(||.25^{\#})}{32.0^{\#}} = |38 \text{ LBS/SCREW (MAX)}$$

SHEAR (V)

$$V = \frac{280^{\#} + 88^{\#}}{3 \text{ screws}} + \frac{263^{\#}(21.0^{\#})}{32^{\#}} = 295 \text{ LBS/5CREW (MAX)}$$

NOTE: PROVIDE WALL STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN. (BY ENGINEER OF RECORD FOR THE BUILDING)

SCOTSMAN EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING SCOTSMAN EQUIPMENT ANCHORAGE MDT5N40 AIR AND WATER NUGGET ICE MAKER/DISPENSER SEISMIC ENGINEERING 1 MEET MEET

FRONT ELEVATION

LOADS: PER 1998 CALIFORNIA BUILDING CODE - SECTION 1632A

WEIGHT = 324 LBS

HORIZONTAL FORCE (VH) = 0.94W = 305 LBS

VERTICAL FORCE (Vy) = 0.33(V4) = 102 LB5

BOLT GROUP PROPERTIES:

1x-x = 125 in.4

1z-z = 540 in.4

1Y-Y = 665 In.4

MOMENTS:

MXX = 305 # (20.1") + (324# - 102#)1.15" = 6,386"#

M77 = 305#(20.1") = 6,131"#

 $M_{YY} = 305 \# (1.15") = 351" \#$

BOLT FORCES:

TENSION (T)

$$T_{X-AXIS} = \frac{6386"\#(5.59")}{125} - \frac{324# - 102#}{4} = 230 LBS/BOLT$$

$$T_{Z-AXIS} = \frac{6|3|"#(11.62")}{540} - \frac{324# - 102#}{4} = 76 LBS/BOLT$$

T = 230# + 76# (0.3) = 253 LBS/BOLT (MAX)

SHEAR (V)

$$V = \frac{305\#}{4} + \frac{351\% + \sqrt{5.59^2 + 11.62^2}}{665} = 83 LB5/BOLT (MAX)$$

COUNTERTOP STRUCTURE SHALL BE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN BY OTHERS.

TMAX = 253 LBS/BOLT

VMAX= 83 LBS/BOLT

EASE EQUIPMENT ANCHORAGE & SEISMIC ENC	SINEERING	
SCOTSMAN EQUIPMENT ANCHORAGE	DER R. LA BRIE	8HDET
	JOS 11-0124	
MODEL MDT6N90 ICE MAKER	DATE 6/20/01	or 1 anner

SEISMIC ANCHORAGE

LOADS: PER 1998 CALIFORNIA BUILDING CODE - SECTION 1632A

WEIGHT = 450 LBS

HORIZONTAL FORCE (VH) = 0.94W = 423 LBS

VERTICAL FORCE (W) = 0.33(VH) = 141 LBS

BOLT FORCES

TENSION (T)

T SIDE TO SIDE =
$$\frac{423\#(26.0")}{2\text{BOLTS}(30.42")} - \frac{450\# - |4|\#}{4\text{BOLTS}} = 104 \text{ LBS/BOLT}$$

TFRONT = $\frac{423\#(26.0")}{2\text{BOLTS}(16.38")} - \frac{450\# - |4|\#}{4\text{BOLTS}} = 258 \text{ LBS/BOLT}$

T = $258\# + 104\#(0.3) = 289 \text{ LBS/BOLT (MAX)}$

SHEAR (V)

$$V = \frac{423^{\#}}{4} = 106 LBS/BOLT (MAX)$$

NOTE:

COUNTERTOP STRUCTURE SHALL BE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN BY OTHERS.

6-20-01